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Superconducting y-Ray Spectrometer €
(Ultra-Spec) GlobalSecurity

Anticipate « [nnivate » Deliver

Operating Principle Spectrometer

Gamma-ray absorption
increases absorber
temperature, which is

Refrigerator

measured with a Cold finger
: superconducting with detectmﬁ
Si Substrat
o thermometer Source .
Energy resolution AErywHm =2.355\/ kBTZC Electronic
read-out
Results
=0 | 254+h ‘(<_‘>23‘8u‘) | — UltraSpec Terrt1pelratur
contro

0 A —HPGe| Low-temperature

950 | operation
. . enables ultra-high energy
g 20 Th K, (©70) uk | resolution, <80 eV FWHM.
S 150, Applications

100 m Ultra-high energy resolution greatly

50 Im increases precision of isotope ratio

U __ measurements in cases where HPGe
° o4 9% 98 detectors are affected by line-overlap.
Energy [keV]
Lawrence Livermore National Laboratory e.g. MGA for Pu at 100keV, MGA-U for U at 92keV




We are developing a compact Compton €
imager GlobalSecurty

= The Compton camera determines the direction of the gamma ray by tracking its
interactions inside a multilayered detector system.

= Compton imaging provides 180 deg field of view, 2 deg angular resolution (3
cm at 1 m), 2 keV energy resolution, and can image the 186 keV 235U line and
the 375 and 414 keV 23%Pu lines.

= |t takes 5 min to image 1 g 23°Pu in a 6 cm pixel, 2 m away

v source

We have built and tested the first Compton camera to take
advantage of the new semiconductor strip detector technology
that enables high-spatial-resolution, collimatorless imaging.
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Verification or material hola-up and diversion in enrichment

plants by combining 3D laser ranging with Compton camera Y

gamma-ray imaging SlobeBecurity
Lidar scans will provide the map of objects in the Monte Carlo simulation of the
environment. The Compton camera measures gamma-ray intensity image of Pu-
the gamma-ray image. 239 hold-up in a pipe elbow.

Combining wide field-of-view gamma-ray imagers with 3D range
maps obtained with a Design Information Verification (DIV) lidar
scanner improves the fidelity of the gamma-ray image and adds a
capability to directly measure isotope hold-up information
compared to using laser ranging alone. @




Measurements demonstrate gamma-ray GS
imaging of materials in pipes " i

Reconstructed gamma-ray
image measurements of a
Eu-152 344 keV gamma-ray
line source (analog for the
Pu-241 414 keV line) hidden
in a pipe are shown as
contour plots on top of
visual panoramic images of
the Lab.

Raw Compton image
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Expectatlon MaX|m|zat|on MaX|mum Likelihood (EM- ML) Algorlthm

Compton imaging will help mspectors verlfy plant designs,
design changes, diversion of SNM, movement of SNM, hold-

up and material accumulation. — '&
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Y,

-ray image is
map — snapshot of the 3D model (side view)
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New method: Correlated Fast Neutron GS
Counting GlobalSecurity

= Fast neutron counting enables isolation of individual
fission events

= This will enhance the capability to statistically
determine the fission isotopes in a mixed TRU stream

—Cm versus Pu
= With 60 keV active interrogation, we can
preferentially fission 23°Pu (and %3°U) over %4°Cm

—239Py and %4°Pu dominate in concentration and
fission cross section

Lawrence Livermore National Laboratory @
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Measured Count Distributions GlobelSecuri

Correlated Fission Source has wider distribution than predicted
from Poisson (Random) with the same count rate

0 = o @
3 ()

n 10° < ® ® gglitzson 2
S o ] o Random Source
o
2 10 - ° (AmBe) 2.1K cts/sec
;) 10° - e
o [ )
(7] 2
qg) 10 °
= 10' —=

100 ] : \ ‘ \ ‘ \ \ \ §

-1.000 1.000 Nlj’:r%()tger Of CSOOL(IJ?'ItS per7.80y%|e 9.000 11.000
06132002 _104441-2A, Gate 512, 512 usecs

10°
504 * %% e, A
= 10° n - .
® 10 . Fission Source
o 4
2 103 ) 4 2 _ o
o 10 o S.F., M=1, eff ~ 3%
< 10° 4 o ) ?
8. 10! 4 o
g 3 E 252 Cf 3.1K cts/sec
F o100 A ‘ ‘ \ ‘ ‘ \ ‘ ‘ \ ‘ ‘ \ ‘ ‘ \

-1.000 2.000 Nu m%(éolp of cou nSt%O%er Cycllé.OOO 14.000
Lawrence Livermore National Laboratory @
9



Individual Fission Chain Detection

Measured data from 22 kg bare HEU shell
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Fission chain burst is easily distinguished from cosmic ray
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Fission Neutron Distributions

6,
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 SNM fissions with an expectation of 2-4 neutrons
 Finite probability of more (especially with multiplication)

Spontaneous Fission Neutron Distributions
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Time Scales: What does timing buy?  ..cscu

Liquid Scintillator is fast (nanoseconds) can detect individual
fissions even in high count rate environments

Neutron Thermalization Time
(®*He/1°B detectors, reactors)

Fission Chains (metal)
<— Individual Fission

<— Liquid Scintillator/Stilbene Detection Time  Time (S)
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High source count rate requires new C
technologies Slobalsecuit
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=  With our new Liquid Scintillator array and
nanosecond timing data acquisition
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We have demonstrated isolation of fission chains in Pu
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Discrimination of neutrons and gamma- Gg

rays with Ilql"d scintillator GlobalSecurity
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Active interrogation GiobalSecurity

100 235U

—— 228
U

« Use low-energy neutrons to
induce fission in 23U and
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60 keV neutrons preferentially fission 235U and 23°Pu over 242Cm

The fission cross section for 238U is even smaller
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60-keV neutron interrogation ggsm
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Low Energy Neutron Interrogation with fast C
scintillator detection SiobalSecurty

= Only SNM Pu, 235U readily fission from low energy
neutrons

= Measuring with fast scintillator preserves neutron
energy

= Detector can be made invisible to interrogation Beam

= Changes in Fast Neutron Signature can help distinguish
Neutron Source (e.g. Cm from Pu, HEU from LEU or
DU)

= Fast Neutron Detection allows Pulsed Interrogation with
Portable D-D or D-T generators.

Lawrence Livermore National Laboratory @
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Solid-state neutron detectors ggsm
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= LiF, 19B solid state neutron
detection

= Ubiquitous neutron detection
= Low power consumption
= [nsensitive to gammas

= Preamplification for each
detector, signals can be
transmitted via wire or
wireless

= Preamplifier performs as well
as commercial unit

LLNL preamp Commercial
preamp

Lawrence Livermore National Laboratory
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Nanotechnology can lead to dramatic s
improvements in radiation detection geosccuis

Radiation Scintillation
For gamma-ray detection

= 3D matrix of semiconductor nano-
crystals
« Tuning the size of the nano-crystals

will allow optimal scintillator-
photodetector match.

For neutron detection

Radiation electrons/holes

= 3D semiconductor pillars | collected

surrounded by a boron-10 matrix

* Tuning the size of the pillars will
lead to improved efficiency.

The ability to control semiconductor dimensions at the nano/micro-scale
can potentially lead to the next generation radiation detectors.



Pillar device for high efficiency neutron detection @
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Next generation high efficiency detectors C
based on pillar technology Sloaecurit

= Neutron detection efficiency o — T —
- B2 um pillar, 2 pm separation 1’
can be as high as 50% o setonsi 1%
. . . O\o F=T=g===- —--->10)(i|_1cre e-N
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. . . [
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Applications for solid-state neutron detectors G.gm
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= “Smart tags” for tracking
material flow

= Monitor centrifuge hall

= Storage area, transport
through pipes, etc.

= Ubiquitous detection
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Next steps: Need to do simulations and measurements to demonstrate
this capability for specific Safeguards regimes
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